
Instructions

In this video we will learn how instructions are coded as bit patterns and we will learn how the 
computer distinguishes between instructions and data.

Computer programs are made up of a series of instructions, a compiler running a high level program 
must fi rst convert the code that has been written by a programmer into a binary representation of the 
instructions, this is known as machine code.

When we program we do not directly write in a language that the computer understands, a 
programming language is known as a ‘higher level language’, this is then converted into machine 
language known as binary instructions that a computer would understand.

Instructions are coded as binary patterns. Bit patterns are made up of three parts: the Op-code sets 
the instruction part, the Operand – this will contain either data or the address to be processed and the 
Number bit – this tells the computer if the information in the Operand is either a value or an address. 

This here is an instruction set. A series of instructions are used by the CPU to perform a series of tasks.

The example here shows the Op-code as “011” which has the Mnemonic “ADD” and the function would 
be to ADD the value to the operand 011010.

I know that in binary 000011 is the number 3. 

The number bit in this example is set as ‘1’ so I know that in this instruction 3 is a value and not an 
address. So, if I put it all together, this instruction code would mean to ADD value 3.

As we have explained in the fetch execute cycle, instructions are collected, processed and run one by 
one. So here is a typical table that shows the start of an instruction’s being followed by the CPU.

The fi rst three digits in any line of the machine code will always be the Op-code instruction and these 
are written as Mnemonics to simplify programming (so we have LOAD, STORE, ADD), this is known as 
assembly language. Can you see it is much easier for us to read and follow the Assembly code instead 
of the machine code? An assembler is used to convert the instructions to the binary representation so 
that a CPU can understand the instruction. 

It is a really important point here to remember that the computer will expect the fi rst three digits to be 
the Op-Code instruct set, it has no way to understand and cannot distinguish between the instructions 
and the data that it receives. Therefore an error will occur if this is given incorrectly. The CPU will always 
attempt to process the fi rst three digits as an O-code instruction.

Summary
To summarise we have learnt that the binary instructions have three main parts: the Op-Code, the 
Operand and the binary bit.

The Op- code sets the instruction part, the Operand – this contains either the data or an address to be 
processed and the number bit which sits in between the Op-code and the Operand and this tells the 
computer if the information in the Operand is either a value or an address.

Mnemonics are used to simplify the programming. An assembler is used to convert the instructions 
to machine language so that the CPU can understand the instruction. Machine language is when the 

TRANSCRIPT



instructions are in binary code. This is how the computer understands instructions, but it is not so easy for 
us humans to read what is happening.

Lastly, it is important to note that the computer cannot tell the difference between the data that it receives. 
The computer expects the fi rst part of the data to be the Op-Code, the instruction, and once it has fetched 
the instruction it will process it as an instruction. This can cause errors in the program if it does not fetch 
the instruction correctly.


